Skip to content

Row collapsing

It’s not always possible to store everything in a tidy but hugmongous data store.

I told you so. stability.ai

Table of Contents

Untidy happens

It’s not always possible to store everything in a tidy but hugmongous data store. So, we have things like SQL foreign keys.

Unfortunately, the database may not have been set up with future tidy in mind. Or, database access is only provided through CSV files.

Here’s an example of what can happen. We begin with some basic information, as tidy as we could wish.

> patients
# A tibble: 3,064 x 6
     INC_KEY   AGE GENDER MALE  FEMALE ADULT
       <int> <int> <chr>  <lgl> <lgl>  <lgl>
 1 150238916    59 Male   TRUE  FALSE  TRUE 
 2 150193078    37 Male   TRUE  FALSE  TRUE 
 3 150580164    29 Female FALSE TRUE   TRUE 
 4 150917895    82 Female FALSE TRUE   TRUE 
 5 150376887    58 Female FALSE TRUE   TRUE 
 6 150508153    35 Male   TRUE  FALSE  TRUE 
 7 150415059    21 Male   TRUE  FALSE  TRUE 
 8 150184182    24 Female FALSE TRUE   TRUE 
 9 150318438    20 Male   TRUE  FALSE  TRUE 
10 150508148    64 Male   TRUE  FALSE  TRUE 
# … with 3,054 more rows

A separate file contains variables of interest

> d_codes
# A tibble: 25,643 x 2
     INC_KEY DCODE 
       <int> <chr> 
 1 150284827 922.2 
 2 150284827 867.0 
 3 150284827 835.00
 4 150284827 808.51
 5 150284827 808.43
 6 150284827 808.2 
 7 150284827 805.6 
 8 150004383 924.8 
 9 150004383 919.0 
10 150004383 901.0 
# … with 25,633 more rows

Now, of course we can left_join the two, but, of course, we get

  str(patients)
  Classes ‘tbl_df’, ‘tbl’ and 'data.frame':   28042 obs. of  23 variables:
   $ INC_KEY     : int  150580164 150580164 150580164 150580164 150580164 150580164 150580164 150580164 150580164 150580164 ...
   $ YEAR        : num  2015 2015 2015 2015 2015 ...
   $ AGE         : int  29 29 29 29 29 29 29 29 29 29 ...
   $ ADULT       : logi  TRUE TRUE TRUE TRUE TRUE TRUE ...
   $ INTERVENTION: logi  FALSE FALSE TRUE FALSE FALSE FALSE ...
   $ SURGERY     : logi  TRUE TRUE TRUE TRUE TRUE TRUE ...
   $ EXPIRED     : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
   $ 808.0       : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
   $ 808.1       : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
   $ 808.2       : logi  TRUE TRUE TRUE TRUE TRUE TRUE ...
   $ 808.3       : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
   $ 808.4       : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
   $ 808.41      : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
   $ 808.42      : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
   $ 808.43      : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
   $ 808.49      : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
   $ 808.5       : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
   $ 808.51      : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
   $ 808.52      : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
   $ 808.53      : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
   $ 808.59      : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
   $ 808.8       : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
   $ 808.9       : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...

Notice the duplicated INC_KEY field in the first line of str()

This is the dreaded duplicate row problem.

Many approaches (nested tibbles, for example), failed either through limitations or my own misunderstanding on how they work. I did, however, find a solution based on the the fortunate fact that the variables to be combined were all logical.

The 800 series in the table above represent types of pelvic fractures. Because the source data records for each INC_KEY, or patient identification, for these and other diagnostic codes, there are many more rows of data than there are patients. After a simple extraction of the 800 codes, the de-duplication proved surprisingly simple.

# deduplicate
dedup_fractures <- fractures %>% group_by(INC_KEY) %>% summarize_all(mean)
fractures <- dedup_fractures %>% group_by(INC_KEY) %>% mutate_if(is.double, as.logical)

For a TRUE entry, the mean will be 1; a FALSE entry will be 0. The second line simply converts these results back to logical type.

This approach is not strictly limited to logical vectors. For example, you have have a second table with numeric values, such as age, that do not vary. The mean of age 29 is 29 whether you have one or a hundred rows.

Latest

Counting chickens

Counting chickens

Refining polling models. It's the received wisdom of the ages—don't rely on events that haven't happened yet. On the other hand, don't bring a knife to a gunfight, either.

Members Public